Neural and perceptual adjustments to dim light.

Citation Info

Matthew Peterson, Izumi Ohzawa, Ralph d. Freeman (2001)
Neural and perceptual adjustments to dim light.
Visual Neurosci. 18: 203-208.
Key Words: Visual cortex; Luminance; Temporal integration; Temporal-frequency tuning; Temporal expansion.

Press this button if you wish to receive a reprint:

Abstract

At reduced luminance levels, the visual system integrates light over extended periods of time. Although the general effects of this process are known, specific changes in the visual cortex have not been identified. We have studied the physiological changes that occur during a transition from high to low luminance by measurements of single neurons in the cat's primary visual cortex. Under low-luminance conditions, we find increased latencies, expanded temporal responses, and a loss of temporal structure. This results in temporal-frequency tuning curves that are peaked at relatively low frequencies. To examine parallel perceptual changes, we compared perceived temporal frequency in human subjects under high- and low-luminance conditions. Low-luminance flickering patterns are perceived to modulate at relatively high rates. This occurs even though peak sensitivity is shifted to relatively low temporal frequencies. To explore further the perceptual component, we measured perceived temporal frequency in human subjects with unilateral optic neuritis for whom optic nerve transmission is known to be relatively slow and generally similar to the normal physiological state under low luminance. These subjects also perceive relatively high modulation rates through their affected eye. Considered together, these results demonstrate an inverse relationship between the physiological and the perceptual consequences of reduced stimulus luminance. This relationship may be accounted for by shifts of neuronal population responses between high- and low-luminance levels.